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Abstract. The statistical mechanics of polymer molecules subject to topological constraints 
is formulated. In Farticular, the problem of two polymer loops topologically linked is 
studied in the limit when one of the loops is allowed to fill a macroscopic volume at a finite 
density. We show that this problem can be recast as a local gauge invariant field theory in 
the usual limit that the number of components goes to zero. The gauge invariance is a direct 
consequence of the fact that topological entanglements imposed on the system are 
conserved. 

1. Introduction 

The statistical mechanics of linear polymer chains have been studied for a long time, and 
the properties of linear polymer molecules are reasonably well understood (see 
McKenzie 1976, for a review). In part this has been due to the discovery by de Gennes 
(1972), des Cloizeaux (1974) and Emery (1975) of the mathematical isomorphism 
between the polymer problem with excluded volume interactions and a certain classical 
n-component field theory (considerably studied in the fields of critical phenomena and 
elementary particle physics) in the limit n + 0. This present paper is also concerned with 
identifying the field theoretic problem associated with the statistical properties of ring 
polymers subject to topological constraints that prevent one ring from penetrating 
another. From the outset we must distinguish between entanglements as the word is 
normally used in the polymer literature and topological entanglements which will be the 
proper subject of this paper. The term ‘entanglement constraint’ has been used by 
many authors (see Graessley 1974, for a review) to describe the rather general 
restrictions on mobility that occur in concentrated solutions and the molten state. The 
term ‘topological entanglements’ will be used to describe a topological property existing 
between different molecules which is necessarily conserved throughout all the 
configurational changes that the molecule can undergo. As the notion of ‘topological 
entanglements’ will occur frequently in this paper, we have simply referred to them as 
‘entanglements’ for the sake of brevity with ‘topological’ being understood. 

In recent years, considerable experimental effort has been directed at these systems. 
Frisch and Wasserman (1961) (and further references cited therein) have indicated the 
existence of topologically interlocked polymer rings, commonly known as catenanes in 
chemical literature, in many polymeric materials. 

Wolovsky (1970) and Ben-Efraim eta1 (1970) have demonstrated, by mass spectro- 
scopic analysis, the existence of substantial amounts of catenanes in a certain reaction of 
cyclododecene. 
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Wang (1973) has shown that interlocked DNA rings are widely distributed in 
nature-a fact of some importance in genetics since a DNA catenane cannot finish the 
replication cycle as the two daughter molecules would be linked with each other. 

The statistical properties of entangled polymers are expected to be considerably 
different from those of linear molecules, as entanglements constitute global constraints 
on the configurations of molecules even in 8-solvents where the excluded volume 
interaction is absent, leading to a decrease in the configurational entropy and 
consequently in the free energy of the system, depending on the initial topological state 
of the system. Therefore, it is necessary to be able to distinguish between the various 
topological states of the system-i.e. we need an invariant of the system. 

Entanglements are specified by topological invariants. Two links which can be 
transformed into each other by continuous deformations are isotopic; hence they 
belong to a particular topological classification. A link in one topological class cannot 
be isotopic to a link in another topological class. Topological entanglements in 
polymers can occur, either as a consequence of one polymer being linked with another 
polymer, or as self-knotted configurations-i.e. different parts of the same polymer 
chain being linked with each other. The various attempts at the formulation of a 
statistical-mechanical theory of entanglements, incorporating the various types of 
topological constraints, have been characterised by two fundamentally different 
approaches. The analytical approach, based on the functional integral model of a 
polymer chain, and the use of an integral invariant-the Gauss integral-was pioneered 
by Edwards (1967,1968) and in the subsequent works of Edwards and his co-workers. 

A second approach, based on Monte-Carlo methods, and an invariant from 
algebraic topology-the so-called Alexander Polynomial-was initiated by Vologod- 
skii et a1 (1974, 1975) and later by des Cloizeaux and Mehta (1979). However, in this 
paper we shall follow the analytical approach of Edwards, and use field-theoretical 
methods and the Gauss integral. We shall restrict our discussion to that for closed 
loops only-as otherwise topological invariants are not, mathematically, well defined. 
In this approach we shall not consider any self-knotted configurations as no suitable 
analytical invariants, that can distinguish between various knots, exist. Instead, we 
shall consider the simplest possible model of entangled polymers-a system of two 
linked molecules. 

In 5 2 we give a rigorous definition of linking numbers in terms of the Gauss integral. 
Then we show that the constraint imposed on the topology by the requirement of the 
conservation of the linking number leads, naturally, to a set of symmetry trans- 
formations which we ultimately exhibit as a local gauge-invariant field theory. This is in 
contrast to the usual situation in gauge-field theories where the requirement of local 
gauge invariance leads to topological conservation laws, e.g. the Wilson loop integral 
described by Wilson (1974) and Banks eta1 (1977). 

In 5 3 we set up a model for our entangled system of polymer molecules by 
identifying a single molecule and replacing the rest by one macroscopically long chain 
which is taken to fill the macroscopic volume occupied by the system. We then study the 
topological relation of the identified polymer with the ‘background’ molecule and the 
restrictions that this will impose on the conformation of the identified polymer. The 
conformations of both polymers will be described by the random walk model or 
equivalently by Wiener distributions and we will explicitly show how the functional 
integration over the configurations of the background chain can be approximately 
carried out. This leaves us with the partition sum for the identified molecule, which now 
assumes an additional self-interacting term due to the entanglement constraint. 
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In 0 4 we derive a ‘Lagrangian’ from which the configurational properties of this 
self-interacting polymer can be calculated, and show that it has the form of an 
n-component gauge-field theory Lagrangian in the limit n + 0. This is in contrast to the 
work of Stone and Thomas (1978) who have obtained a conventional gauge-field 
theory, isomorphic to scalar quantum electrodynamics, for a system of topologically 
unconstrained polymer loops interacting via a Biot-Savart type interaction. 

2. The Gauss integral and gauge invariance 

The problem of deciding whether two closed curves are linked or not is given by an 
integral formula due to Gauss. Let C,, CO be two oriented, non-intersecting, closed, 
differentiable curves of class C1 in E 3 .  If C, is the boundary of a compact, oriented 
two-dimensional manifold M, then the linking number I{C,, C,} is defined to be the 
intersection number of M and C, ; hence it is an integer, and is expressed by the Gauss 
integral, given by Alexandroff and Hopf (1935), as 

4x8 = I{C,Y C,l 

where s, is the arc length on the C, curve, r(s,)  a position vector to a point on the curve 
and i=dr /ds .  The linking number remains invariant under an isotopy of the link; 
hence it is a topological invariant. However, it is only a first-order topological invariant, 
since for linked configurations, such as the Whitehead link figure l(d),  a non-boundary 
link, the linking number is zero. 

I u p  = 1 IuO = 2 IuO = 0 I @ =  0 

I C  i ( d l  Io  I lb 1 

Figure 1. 

Higher order link-invariants, such as the Alexander Polynomial, that can distinguish 
between the configurations of figure l(a) and l(d) exist (e.g. Vologodskii et a1 1974). 
However, such invariants are group-theoretic in nature, and thus not suitable for the 
functional integral formalism used in this paper. 

In the polymer context, the Gauss integral was first discussed by Delbruck (1962), 
Edwards (1967) and Iwata (1974). Its limitations as a topological invariant were 
discussed by Vologodskii et a1 (1974). 

For our purpose it is most convenient to write the Gauss integral formula (2.1) as 
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where we have defined a vector field 

1 
A ( r , )  =-f dr, x V ( l / l r m  -r,l). 

497 C O  
(2.3) 

We note that if CO represented a line of magnetic flux, then A ( r , )  would represent the 
vector potential due to this flux line. 

Equations (2.2) and (2.3) exhibit an important symmetry transformation, for, under 
an isotopic deformation of CO such that 

c, -9 Cb and la, + I&,  = I,,, 

A(r,)+A’(r , )  = A ( r , ) + V a ( r , )  (2.4) 

we have 

where n(r,) is the solid angle subtended by the curve CO - Cb at r,. 
Equation (2.4) is recognised in electromagnetism as a local gauge transformation of 

the vector potential. It arises directly from conformational changes that preserve the 
linking number. 

If the deformation is not isotopic, and C, is allowed to cut through the curve C,, then 
the linking number lap will change by an amount il; hence the Gauss integral jumps by 
a value *4lr. 

We will represent polymer configurations by the two curves C, and Co. The 
following two properties of the vector field A are easily derived from the definition 
(2.3). The first expresses the fact that the curve C, is closed: 

V . A = O  (2.5) 

whilst the second result locates the source of the A field: 

V X A (R = dsp Lo (so ) S (r,  - R ) = U p  ( R  ) , 

U p ( R )  is the density of the &chain monomer bond vectors at space point R. 
The conservation of the linking number between the two polymers C, and C, to a 

value m, m E Z, is expressed by the Kronecker delta, which can be parametrised by: 

1 +- 

21r -r 
S[I,, - m ]  = - I dg exp{ig(Ia, - m)l 

(2.7) 

The term exp{ig 4,- A(r,)  . dr,} plays a significant role in gauge-field theories and may 
be identified with the Wilson loop integral (Wilson 1974) used extensively in gauge 
theories of confinement. We shall discuss this in greater detail in § 4. 

3. The statistical mechanics of entanglement 

Ideally we would like to treat N polymer loops with specified topological constraints 
between each pair of loops. This appears to be a formidable problem so we have 
identified one polymer molecule, say {r,  (s)}, and replaced the rest of the molecules in 
the system by one very long ‘effective’ molecule {Rp(s) }  which will be referred to as the 
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background chain. For both molecules we assume random flight statistics, so that the 
configurational probability of a polymer chain r ( s )  = { r ( s ) :  0 G s s L, step length I} is 
given by the Wiener measure 

P[r(s)]gdr = N 9 r  exp( -$ IoL i 2 ( s )  ds] 

with 

and gar represents functional integration. It is well known that the measure (3.1) 
satisfies the diffusion equation: 

For any property Fap 
averaged over all the configurations of the two polymers, is given by 

F[{r ,  (s)}, {Rp(s))] of the two polymers, the value of Fap, 

(3.4) 

where 

Z(A, L, m )  = I gr,grpP(ra)P(Rp)S[lap, nil exp{AF[{ra), {&)I). (3.5) 

Using the parametrisation (2.7) for the Kronecker delta function and (3.1) for the P(r) ,  
Z(A, L, m )  can be expressed as 

1 r r  

Z(A, L, m )  =I J dg exp{-igm}Z(A, L, g) (3.6) 2 T  -= 

where 

The Dirac delta function in this result expresses the condition for the molecules to form 

In this paper we will be concerned only with the properties of the identified chain a, 
loops. 

so that 
FC{ra), W P ) 1  = mra11. 

Hence we can try to do the averaging over the configurations of the background chain 
R. 

In attempting the functional integral over {Rp} an immediate difficulty presents 
itself with the term Iap[ra, RP] in (3.7), as it cannot be evaluated in any closed form. 

However, we can write this term from (2.1) as 

l a p  = d R  J ( R )  . V p ( R )  I 
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where U p ( R )  is the density of bond vectors of the p-chain defined by equation (2.6), 
and 

J(R)  = dR’ V(l/IR -R’l) x U”(R’) .  (3.9) 

An approximation that enables us to make further analytic progress is to replace 

(exp{igIapH{R,) = exp{-- h 2 ( G  )OW}. (3.10) 

This is tantamount to treating the density of the p-chain bond vectors as Gaussian 
random variables, so that 

-exp( -is2 dR dR’J(R)  .J (R’) (U’(R) .  U’((R’)){R,)). (3.11) 

Therefore we have replaced the configurational average over the background chain by 
an average over the bond vector densities U p ( R )  with the distribution 

where N u ,  is the normalisation, and 

k ( R ,  R’)  = (Up ( R )  Up (R’)){R,) 
r 

The original Gaussian distribution (3.1) for { r p )  is used to calculate the RHS of (3.13). 
For a long chain (Lp + CO) which we imagine to fill a macroscopic volume, so that the 
density of the background monomers is finite, we find that 

(UP(R)  UP(R’)){R,}=p12S(R-R’) (3.14) 

where p is the density of monomers. Thus the distribution of bond vector densities 
(3.12) becomes 

(3.15) 

We recall from (2.6) that U p  is the source of the vector field A(R) ;  consequently the 
functional integration over the bond vector densities U p  can be replaced by functional 
integration over the A field (integration being restricted over those fields that satisfy 
V , A = 0). 

Then, 

9 A  exp{-Sf[A]}S(V. A) 
p{Up}9Up = j  9 A 6 ( V ,  A) exp{-%[A]} 

(3.16) 

where 

H A ]  = (3/2pI2) J dR(V x A ) ~ .  
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Now using the definition (2.3) for Imp, we may finally write 

where (. . .){A) is given by equation (3.16). 
The partition sum (3.7) may, then, be written as 

I x exp{ -: ioL* i f  ds + AF{r,} 

with 

3 L= 
N i l  = 9r,9AS(V. A )  exp{ -U Io i f  ds -P[A]) .  I 
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(3.17) 

(3.18) 

(3.19) 

Equation (3.18) will form the starting point in the next section for deriving the 
relationship between this problem of an entangled molecule and an n + 0 component 
gauge-field theory. However, to complete this section we wish to remark that the 
functional integration over the {A} field is just a standard Gaussian functional integral. 
Consequently it can be evaluated to give: 

(exp{ igf A .  i ds)){A)= expI-$g2 ds ds’ W [ r ( s ) ,  r(s’)]) (3.20) 

where 

W[r(s) ,  r(s’)] = 1 i i ( s ) Z j { R ( s ,  s ’ ) } i j ( s ’ )  
i j  

and 

and 

~ ( s ,  s’) = ( r ( s ) - r ( s ’ ) ) / l r ( s ) - r ( s ’ ) l .  

Thus the partition sum (3.18) for the single entangled chain can be written as 

Z(A,  L, g) =xi1 I g r ~ r , ( ~ ) - r , ( ~ , ) ~  

(3.21) 

(3.22) 

(3.23) 

I L, 
x exp[ -(3/21) i f  ds + AF{r,} 

0 

xexp[ -$g2 [ ds ds‘ W[r,(s) ,  r , ( s ’ ) ] ] .  (3.24) 

The entanglement constraint has now appeared as a self-interaction term 
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{-g2/2 55 W ds ds’}. The first term in W, given by (3.21), is familiar from electromag- 
netism as the self-inductance of a loop. The ‘coupling constant g’ in this theory is 
conjugate to the linking number m. 

4. The entanglement constraint as a gauge-field theory 

In § 3 we obtained the partition sum (3.18) for the average value of a single chain 
property F{r,} for the a-chain in topological interaction with a large background chain 
(p-chain). 

In this section we shall explicitly show that the statistical mechanics of an entangled 
polymer molecule can be described as a classical n-component gauge-field theory in the 
limit n + 0. To this end we first consider an explicit form for the function F{r,} by 
considering the monomer-density of the entangled polymer at the space-point R. 

Therefore we set 

F{r} =,S[r(sl) -R] (4.1) 
where, for the sake of brevity, the a subscript has been suppressed. 

We then define the averaged monomer density of a chain of length L as 

Next, we use equations (3.4), (3.6) and the partition function (3.18) to obtain the 
average value of the Dirac delta function in equation (4.2) as 

where 

G(R,  s; L,.g) =Xi’ gr (s )gA(r )S(V .A)S[r (O)-r (L)]G[r(s l ) - r (O)-R]  

(4.3) 

and the normalisation factor Xi1 is given by equation (3.19). 
Because of the closed-loop constraint on the polymer, it is possible to factorise the 

Wiener integrals in equation (4.4) into those with paths that begin at r(0) and reach R 
using an arc length sl, and those with paths that begin at R and reach r(0) using an arc 
length ( L  -sl). 

Thus the interaction term in (4.4) can be written as 
S I  

/ O L A .  t ( s )  ds = Io A(r(s))  . i ( s )  ds - IoL-’* A(r’(sf)). i ’ ( s ’ )  ds’ (4.5) 

where for s a s1 we have defined s f  = L - s1 and r’(s‘) = r(s). Next, we make a change of 
variable r + R - r(0) in the configurational Dirac delta functions appearing in (4.4), and 
factorise equation (4.4) thus: 

J BAS(V. A )  exp{-2?[A]}K(r, s l ;  [A])K(r, s’; [-AI) 
gAS(V.  A )  exp{-L?[A]} G(r, s; L, g) = (4.6) 



Topological entanglements in polymers 2759 

where we define 

. (4.7) Ji’ 9r(s)S[r(sl)- r(0) - r] exp{-Ji’ ds[(3/21)i2(s) -igA .+I} 
Jil 9 r ( s )  exp{-(3/21) j:’ i2 ds} K(r ,  s1; [AI) = 

It is evident that K(r ,  sl; [A]) is a Markov process. Following Edwards (1968) we 
identify this Wiener integral with the Feynman integral for a charged particle moving in 
an electromagnetic vector potential field A. The K(r, sl;[A]) is known to satisfy a 
Schrodinger-type equation 

{a/asl-al(V,-igA)2}K(r, SI ;  [A])=O 

lim K(r, sl; [A]) = S(r). 
with 

S I - 0  

(4.8) 

The operator (V-igA) is the familiar ‘minimal coupling’ term from scalar elec- 
trodynamics. Next we define the Laplace transform 

We recall from (4.2) that we ultimately need to integrate over the arclength variables SI, 
of the loop, in equation (4.6). This leads to the convolution 

(4.10) 
and equation (4.8) becomes 

[p  -al(V-igA)’]k(r, p ;  [A])= S(r). (4.11) 

To exhibit the field-theoretic content of our formalism, we need to express k ( r ,  p ; [A]) 
in terms of functional integrals. However, because of the coupling of the polymer loop 
to the vector potential A in the interaction term in (4.7), the loop is oriented. This 
orientation of the loop is preserved by the use of complex Gaussian random fields. We 
write 

J 9+ * ( r P +  (r) 4 * (0) + (r) exP{-a+lI 
5 W * ( r ) W ( r )  exp{-~[+I} 

kcr ,  p ;  [AI) = 

(4.12) 

2 [ + ]  = -$  1 dr+*(r)[al(V-igA)2-~]+(r).  (4.13) 

Expression (4.12) represents a polymer ‘propagator’ that starts at +*(O) and ends at 
$(r). The transverse gauge condition (2.5) enables us to write 

(4.14) 

where (. , .)[+I is defined by equation (4.12). The generating functional is obtained by 
adding, to equation (4.13), a linear coupling of +*J, to an external source J ( r ) :  

k ( r ,  P ;  [-AI) = (+ (o~*( r ) ) [@l  

(4.15) 
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Then 

where 

Z[J, A] = I 9494" exp{-9[JI}. (4.17) 

We recall from (4.6) that Z [ J ,A]  has to be averaged over the vector field A ;  the 
averaging over the logarithm in (4.16) can be performed by the use of the replica 
method (due to Edwards and Anderson 1975). Then, we may write (4.16) as 

1 S S Z'"'[J, A ]  
J-o n SJ(r) SJ(O)Z'"'[O, A] k ( r ,  p ; [A])k(r,p ; [-A]) = lim - - - (4.18) 
n+O 

(4.19) 

9[JI, = dr[ i%l(V-igA)4u/z+b IIcblz_J~&/2).  (4.20) 

n is known as the replica index; the limit n + 0 is obtained by analytic continuation. 

written in obvious notation as 
The Laplace transform of the Green function G(R, s;  L, g) in equation (4.6) can be 

1 s  s &R, p ;  L, g) = lim - - - 
1-0 n SJ(r) S J ( 0 )  

(4.21) 

where 

(4.22) 

The Lagrangian (4.22) is invariant under the group of transformations 

A '+A+VA(r)  

+; + eiA(r' (4.23) 
-iA(r) 

$:' -+ IL,* e 

where A(r)  is an arbitrary r-dependent phase, and the phase factor exp{iA(r)} is just the 
well known representation of the unitary group U(1). The minimal coupling term 
appearing in the Lagrangian (4.22) is the covariant derivative which is U ( l )  gauge 
invariant. 
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Therefore, the problem of the entanglement of two polymer rings has now been 
transformed into an n + 0 gauge theory. Topological conservation of linking number of 
two rings has led to a reduction in the number of degrees of freedom that a ring may 
possess-a manifest consequence of gauge invariance. The Lagrangian (4.22) may be 
identified with the Lagrangian for scalar quantum electrodynamics (e.g. Coleman and 
Weinberg 1973). Stone and Thomas (1978) have obtained a similar Lagrangian for a 
system of polymer rings interacting with a Biot-Savart interaction, but with only a 
single-component field. 

The inclusion of excluded volume interactions in the polymer problem is known to 
generate a further term ~ 1 4 ~ 1 ~  into the Lagrangian (e.g. des Cloizeaux 1974), so that 
equation (4.22) becomes 

~ T O T ( J )  = I dr  { ( 3 / 2 p l 2 ) F  x AI2 + i%l(v - igA Mu I’ + $P I I’ + l&14 - J l &  1’1 
(4.24) 

where v > 0 is the excluded-volume parameter. The Lagrangian (4.24) is just the 
renormalised QED Lagrangian, as Coleman and Weinberg (1973) show that a renor- 
malisation procedure, applied to the QED Lagrangian in the form of (4.22), generates a 
[ & I 4  term. In the polymer case, just takes into account the self-repulsion of the 
polymer, and it provides a correct weighting factor for the polymer configurational 
functional integral. The linking number constraint itself acts as a weak form of mutual 
repulsion by not allowing one chain to pass through another chain; however, it does not 
affect different monomers of the same chain. Hence for any realistic formulation of the 
entanglement problem of two chains, it is necessary to include the excluded volume 
effect. 

A similar Lagrangian has been obtained by Hertz (1978) for a continuum spin-glass 
model. We hope to return to this analogy and the effect of entanglements on the critical 
indices associated with polymer configurations in a later paper. 

Acknowledgments 

S S  acknowledges the financial support from the SRC and MGB acknowledges the 
stimulating discussions with Professor S Edwards, Mr R Ball and Dr I Lawrie. 

References 

Alexandroff P and Hopf H 1935 Topologie Z (Berlin: Springer) 
Banks T, Myerson R and Kogut J 1977 Nucl. Phys. B 129 493-510 
Ben-Efraim D A, Batich C and Wasserman E 1970 J. Am. Chem. Soc. 92 2133-5 
des Cloizeaux J 1974 Phys. Rev. A 10 1665-9 
des Cloizeaux J and Mehta M L 1979 J. Physique 40 665-70 
Coleman S and Weinberg E 1973 Phys. Rev. D 7 1888-1910 
Delbruck M 1962 Proc. Symp. Appl .  Math. 14 55-68 
Edwards S F 1967 Proc. Phys. Soc. 91 513-9 
- 1968 J. Phys. A: Math., Nucl. Gen. 1 15-28 
Edwards S F and Anderson P W 1975 J. Phys. F: Metal Phys. 965-74 
Emery V J 1975 Phys. Rev. B 11 239-47 
Frisch H L and Wasserman E 1961 J. Am.  Chem. Soc. 83 3789-95 
de Gennes P G 1972 Phys. Lett. A 38 339-40 



2762 M G Brereton and S Shah 

Graessley W W 1974 Adu. Poly. Sci. 16 1-179 
Hertz J H 1978 Phys. Rev. B 18 4875-85 
Iwata K 1974 J. Phys. Soc., Japan 37 1413-22 
McKenzie D A 1976 Phys. Rep. 27 35-88 
Stone M and Thomas P R 1978 Phys. Rev. Lett. 41 351-3 
Vologodskii A V,  Lukashin A V and Frank-Kamenetskii M D 1975 Sou. Phys.-JETP 40 932-6 
Vologodskii A V, Lukashin A V ,  Frank-Kamenetskii M D and Anshelevich V V 1974 Sou. Phys.-JETP 39 

Wang J C 1973 Accounts. Chem. Res. 6 252--6 
Wilson K G 1974 Phys. Rev. D 10 2455-9 
Wolovsky R 1970 J. Am. Chem. Soc. 92 2132-3 

1059-63 


